<form id="44pyi"><source id="44pyi"><option id="44pyi"></option></source></form>
    1. <wbr id="44pyi"><legend id="44pyi"></legend></wbr>

      <sub id="44pyi"></sub><wbr id="44pyi"></wbr>
    2. <dd id="44pyi"></dd>
      <nav id="44pyi"></nav>
    3. <dd id="44pyi"><address id="44pyi"></address></dd>
      <big id="44pyi"></big>

      <nav id="44pyi"><listing id="44pyi"></listing></nav>
      1. 事業伙伴在三正

        新聞中心

        酶作用的分子基礎

        2017-08-02

        酶作用的分子基礎

        酶的化學組成

          按照酶的化學組成可將酶分為單純酶和結合酶兩大類。單純酶分子中只有氨基酸殘基組成的肽鏈,結合酶分子中則除了多肽鏈組成的蛋白質,還有非蛋白成分,如金屬離子、鐵卟啉或含B族維生素的小分子有機物。結合酶的蛋白質部分稱為酶蛋白(apoenzyme),非蛋白質部分統稱為輔助因子 (cofactor),兩者一起組成全酶(holoenzyme);只有全酶才有催化活性,如果兩者分開則酶活力消失。非蛋白質部分如鐵卟啉或含B族維生素的化合物若與酶蛋白以共價鍵相連的稱為輔基(prosthetic group),用透析或超濾等方法不能使它們與酶蛋白分開;反之兩者以非共價鍵相連的稱為輔酶(coenzyme),可用上述方法把兩者分開。表4-1為以金屬離子作結合酶輔助因子的一些例子。表4-2列出含B族維生素的幾種輔酶(基)及其參與的反應。  結合酶中的金屬離子有多方面功能,它們可能是酶活性中心的組成成分;有的可能在穩定酶分子的構象上起作用;有的可能作為橋梁使酶與底物相連接。輔酶與輔基在催化反應中作為氫(H+和e)或某些化學基團的載體,起傳遞氫或化學基團的作用。體內酶的種類很多,但酶的輔助因子種類并不多,從表4—1中已見到幾種酶均用某種相同的金屬離子作為輔助因子的例子,同樣的情況亦見于輔酶與輔基,如3-磷酸甘油醛脫氫酶和乳酸脫氫酶均以NAD+作為輔酶。酶催化反應的特異性決定于酶蛋白部分,而輔酶與輔基的作用是參與具體的反應過程中氫(H+和e)及一些特殊化學基團的運載。

        酶的活性中心

          酶屬生物大分子,分子質量至少在1萬以上,大的可達百萬。酶的催化作用有賴于酶分子的一級結構及空間結構的完整。若酶分子變性或亞基解聚均可導致酶活性喪失。一個值得注意的問題是酶所催化的反應物即底物(substrate),卻大多為小分物質它們的分子質量比酶要小幾個數量級。  酶的活性中心(active center)只是酶分子中的很小部分,酶蛋白的大部分氨基酸殘基并不與底物接觸。組成酶活性中心的氨基酸殘基的側鏈存在不同的功能基團,如-NH2、-COOH、-SH、-OH和咪唑基等,它們來自酶分子多肽鏈的不同部位。有的基團在與底物結合時起結合基團(binding group)的作用,有的在催化反應中起催化基團(catalytic group)的作用。但有的基團既在結合中起作用,又在催化中起作用,所以常將活性部位的功能基團統稱為必需基團(essential group)。它們通過多肽鏈的盤曲折疊,組成一個在酶分子表面、具有三維空間結構的孔穴或裂隙,以容納進入的底物與之結合(圖4-1)并催化底物轉變為產物,這個區域即稱為酶的活性中心。  而酶活性中心以外的功能集團則在形成并維持酶的空間構象上也是必需的,故稱為活性中心以外的必需基團。對需要輔助因子的酶來說,輔助因子也是活性中心的組成部分。酶催化反應的特異性實際上決定于酶活性中心的結合基團、催化基團及其空間結構。

        酶的分子結構與催化活性的關系

          酶的分子結構的基礎是其氨基酸的序列,它決定著酶的空間結構和活性中心的形成以及酶催化的專一性。如哺乳動物中的磷酸甘油醛脫氫酶的氨基酸殘基序列幾乎完全相同,說明相同的一級結構是酶催化同一反應的基礎。又如消化道的糜蛋白酶,胰蛋白酶和彈性蛋白酶都能水解食物蛋白質的肽鍵,但三者水解的肽鍵有各自的特異性,糜蛋白酶水解含芳香族氨基酸殘基提供羧基的肽鍵,胰蛋白酶水解賴氨酸等堿性氨基酸殘基提供羧基的肽鍵,而彈性蛋白酶水解側鏈較小且不帶電荷氨基酸殘基提供羧基的肽鍵.這三種酶的氨基酸序列分析顯示40%左右的氨基酸序列相同,都以絲氨酸殘基作為酶的活性中心基團,三種酶在絲氨酸殘基周圍都有G1y-Asp-Ser-Gly-Pro序列,X線衍射研究提示這三種酶有相似的空間結構,這是它們都能水解肽鍵的基礎。而它們水解肽鍵時的特異性則來自酶的底物結合部位上氨基酸組成上有微小的差別所致。  圖說明這三個酶的底物結合部位均有一個袋形結構,糜蛋白酶該處能容納芳香基或非極性基;胰蛋白酶袋子底部稍有不同其中一個氨基酸殘基為天冬氨酸取代,使該處負電荷增強,故該處對帶正電荷的賴氨酸或精酸殘基結合有利;彈性蛋白酶口袋二側為纈氨酸和蘇氨酸殘基所取代,因此該處只能結合較小側鏈和不帶電荷的基團.說明酶的催化特異性與酶分子結構的緊密關系。

        酶原與酶原激活

          有些酶如消化系統中的各種蛋白酶以無活性的前體形式合成和分泌,然后,輸送到特定的部位,當體內需要時,經特異性蛋白水解酶的作用轉變為有活性的酶而發揮作用。這些不具催化活性的酶的前體稱為酶原(zymogen)。如胃蛋白酶原(pepsinogen)、胰蛋白酶原(trypsinogen)和胰凝乳蛋白酶原(chymotrypsinogen)等。某種物質作用于酶原使之轉變成有活性的酶的過程稱為酶原的激活(zymogen andactivation of zymogen)。使無活性的酶原轉變為有活性的酶的物質稱為活化素?;罨貙τ诿冈募せ钭饔镁哂幸欢ǖ奶禺愋?。  例如胰腺細胞合成的糜蛋白酶原為245個氨基酸殘基組成的單一肽鏈,分子內部有5對二硫鍵相連,該酶原的激活過程如圖4-3所示.首先由胰蛋白酶水解15位精氨酸和16位異亮氨酸殘基間的肽鍵,激活成有完全催化活性的p-糜蛋白酶,但此時酶分子尚未穩定,經p-糜蛋白酶自身催化,去除二分子二肽成為有催化活性井具穩定結構的α—糜蛋白酶。  在正常情況下,血漿中大多數凝血因子基本上是以無活性的酶原形式存在,只有當組織或血管內膜受損后,無活性的酶原才能轉變為有活性的酶,從而觸發一系列的級聯式酶促反應,最終導致可溶性的纖維蛋白原轉變為穩定的纖維蛋白多聚體,網羅血小板等形成血凝塊。  酶原激活的本質是切斷酶原分子中特異肽鍵或去除部分肽段后有利于酶活性中心的形成酶原激活有重要的生理意義,一方面它保證合成酶的細胞本身不受蛋白酶的消化破壞,另一方面使它們在特定的生理條件和規定的部位受到激活并發揮其生理作用。如組織或血管內膜受損后激活凝血因子;胃主細胞分泌的胃蛋白酶原和胰腺細胞分泌的糜蛋白酶原、胰蛋白酶原、彈性蛋白酶原等分別在胃和小腸激活成相應的活性酶,促進食物蛋白質的消化就是明顯的例證。特定肽鍵的斷裂所導致的酶原激活在生物體內廣泛存在,是生物體的一種重要的調控酶活性的方式。如果酶原的激活過程發生異常,將導致一系列疾病的發生。出血性胰腺炎的發生就是由于蛋白酶原在未進小腸時就被激活,激活的蛋白酶水解自身的胰腺細胞,導致胰腺出血、腫脹。

        同工酶

          同工酶(isoenzyme)的概念:即同工酶是一類催化相同的化學反應,但酶蛋白的分子結構、理化性質和免疫原性各不相同的一類酶。 它們存在于生物的同一種族或同一個體的不同組織,甚至在同一組織、同一細胞的不同細胞器中。至今已知的同工酶已不下幾十種,如己糖激酶,乳酸脫氫酶等,其中以乳酸脫氫酶(Lactic acid dehydrogenase,LDH)研究得最為清楚。人和脊柱動物組織中,有五種分子形式,它們催化下列相同的化學反應:  五種同工酶均由四個亞基組成。LDH的亞基有骨骼肌型(M型)和心肌型(H型)之分,兩型亞基的氨基酸組成不同,由兩種亞基以不同比例組成的四聚體,存在五種LDH形式.即H4(LDHl)、H3M1(LDH2)、H2M2 (LDH3)、H1M3(LDH4)和M4 (LDH5)。  M、H亞基的氨基酸組成不同,這是由基因不同所決定。五種LDH中的M、H亞基比例各異,決定了它們理化性質的差別.通常用電冰法可把五種LDH分開,LDH1向正極泳動速度最快,而LDH5泳動最慢,其它幾種介于兩者之間,依次為LDH2、LDH3和LDH4(圖4-5) 圖4-5還說明了不同組織中各種LDH所含的量不同,心肌中以LDHl及LDH2的量較多,而骨骼肌及肝中LDH5和LDH4為主.不同組織中LDH同工酶譜的差異與組織利用乳酸的生理過程有關.LDH1和LDH2對乳酸的親和力大,使乳酸脫氫氧化成丙酮酸,有利于心肌從乳酸氧化中取得能量。LDH5和LDH4對丙酮酸的親和力大,有使丙酮酸還原為乳酸的作用,這與肌肉在無氧酵解中取得能量的生理過程相適應(詳見糖代謝章).在組織病變時這些同工酶釋放入血,由于同工酶在組織器官中分布差異,因此血清同工酶譜就有了變化。故臨床常用血清同工酶譜分析來診斷疾病(圖4-5)。

        別構酶

          別構酶(allosteric enzyme)往往是具有四級結構的多亞基的寡聚酶,酶分子中除有催化作用的活性中心也稱催化位點(catalytic site)外;還有別構位點(allosteric site).后者是結合別構劑(allesteric effector)的位置,當它與別構劑結合時,酶的分子構象就會發生輕微變化,影響到催化位點對底物的親和力和催化效率。若別構劑結合使酶與底物親和力或催化效率增高的稱為別構激活劑(allostericactivator),反之使酶底物的r親和力或催化效率降低的稱為別構抑制劑(allostericinhibitor)。酶活性受別構劑調節的作用稱為別構調節(allosteric regulation)作用.別構酶的催化位點與別構位點可共處一個亞基的不同部位,但更多的是分別處于不同亞基上.在后一種情況下具催化位點的亞基稱催化亞基,而具別構位點的稱調節亞基。多數別構酶處于代謝途徑的開端,而別構酶的別構劑往往是一些生理性小分子及該酶作用的底物或該代謝途徑的中間產物或終產物。故別構酶的催化活性受細胞內底物濃度、代謝中間物或終產物濃度的調節。終產物抑制該途徑中的別構酶稱反饋抑制(feedback inhibition).說明一旦細胞內終產物增多,它作為別構抑制劑抑制處于代謝途徑起始的酶,及時調整該代謝途徑的速度,以適應細胞生理機能的需要。別構酶在細胞物質代謝上的調節中發揮重要作用。故別構酶又稱調節酶。(regulatory enzyme)

        修飾酶

          體內有些酶需在其它酶作用下,對酶分子結構進行修飾后才具催化活性,這類酶稱為修飾酶(modification enzyme)。其中以共價修飾為多見,如酶蛋白的絲氨酸,蘇氨酸殘基的功能基團-OH可被磷酸化,這時伴有共價鍵的修飾變化生成,故稱共價修飾(covalent modification)。由于這種修飾導致酶活力改變稱為酶的共價修飾調節(covalent modification regulation)。體內最常見的共價修飾是酶的磷酸化與去磷酸化,此外還有酶的乙?;c去乙?;?、尿苷酸化與去尿苷酸化、甲基化與去甲基化。由于共價修飾反應迅速,具有級聯式放大效應所以亦是體內調節物質代謝的重要方式。如催化糖原分解第一步反應的糖原磷酸化酶存在有活性和無活性兩種形式,有活性的稱為磷酸化酶a,無活性的稱為磷酸化酶b,這兩種形式的互變就是通過酶分子的磷酸化與去磷酸化的過程(詳見糖代謝章)

        多酶復合體與多酶體系

          體內有些酶彼此聚合在一起,組成一個物理的結合體,此結合體稱為多酶復合體(multienzyme complex)。若把多酶復合體解體,則各酶的催化活性消失。參與組成多酶復合體的酶有多有少,如催化丙酮酸氧化脫羧反應的丙酮酸脫氫酶多酶復合體由三種酶組成,而在線粒體中催化脂肪酸β-氧化的多酶復合體由四種酶組成。多酶復合體第一個酶催化反應的產物成為第二個酶作用的底物,如此連續進行,直至終產物生成.  多酶復合體由于有物理結合,在空間構象上有利于這種流水作業的快速進行,是生物體提高酶催化效率的一種有效措施。  體內物質代謝的各條途徑往往有許多酶共同參與,依次完成反應過程,這些酶不同于多酶復合體,在結構上無彼此關聯。故稱為多酶體系(multienzyme system)。如參與糖酵解的11個酶均存在于胞液,組成一個多酶體系。

        多功能酶

          近年來發現有些酶分子存在多種催化活性,例如大腸桿菌DNA聚合酶I是一條分子質量為109kDa的多肽鏈,具有催化DNA鏈的合成、3’-5’核酸外切酶和5’-3’核酸外切酶的活性,用蛋白水解酶輕度水解得兩個肽段,一個含5’-3’核酸外切酶活性,另一個含另兩種酶的活性,表明大腸桿菌DNA聚合酶分子中含多個活性中心。哺乳動物的脂肪酸合成酶由兩條多肽鏈組成,每一條多肽鏈均含脂肪酸合成所需的七種酶的催化活性。這種酶分子中存在多種催化活性部位的酶稱為多功能酶(multifunctional enzyme)或串聯酶(tandem enzyme)。多功能酶在分子結構上比多酶復合體更具有優越性,因為相關的化學反應在一個酶分子上進行,比多酶復合體更有效,這也是生物進化的結果。


        上一篇

        這里有最新的公司動態,這里有最新的網站設計、移動端設計、網頁相關內容與你分享

        下一篇

        俄罗斯xxxx性全过程,色屁屁www影院免费观看入口,亚洲加勒比少妇无码av,伊人色综合一区二区三区